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Abstract. The chaoticity parameter λ of Bose–Einstein correlations is studied as a tool for analyzing the
interaction between color strings in multiparticle production at high energies. Different scenarios of this
interaction lead to a different behavior of λ with energy and atomic number of the participants. Comparison
to the present experimental data favors the percolation of strings scenario. The one of its versions in which
λ shows a peculiar dependence on the string density, very similar to the dependence of the fractional
average cluster size, looks particularly attractive.

1 Introduction

Originating in astronomy, the Hanbury–Brown–Twiss
(HBT) effect [1] allows one to obtain information about
the structure of the emitting source using the Bose–
Einstein correlations (BEC) between the momenta of two
identical particles. It has lately been widely used in high
energy multiparticle production [2–6]. At present, BEC
represent the only viable way to know the space-time ex-
tension of the production region [3]. The correlation func-
tion is given by [5]
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where the ρ’s are the corresponding two and one particle
inclusive cross sections. Different parameterizations have
been used for C2, for instance [7]
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In all the parameterizations, the parameter

λ ≡ C2(q = 0) − 1 (1.4)

measures the correlation strength. It can also be inter-
preted as a measure of chaoticity, or degree of coherence,
of the reaction and is known under this name [8,9]. λ = 0
or 1 correspond to a totally coherent or totally chaotic
emission of secondaries, respectively.

Most of the papers related to BEC in the search of
the quark gluon plasma (QGP) study the size parameters
of the correlation function. In this paper, we study the

chaoticity parameter λ. We find that it also carries sub-
stantial information about the dynamics of the multiparti-
cle production and in particular of the possible formation
of QGP.

As in most of the models of soft hadronic interac-
tions, we assume that color strings are formed between
the projectile and target during the collision, which break
due to the formation of quark–antidiquark or diquark–
antidiquark pairs. These strings are of the Lund type, and
therefore correspond to totally chaotic sources, λ = 1 [10–
12]. For particles coming from different strings we assume
absence of BEC; that is, λ = 0. This assumption is usu-
ally done in the framework of the Lund model [13]. We are
aware that the justification of this assumption is not clear
at all [14]. In fact, the corresponding 4 to 4 amplitude,
obtained via the generalized optical theorem, should be
symmetrized if the two particles are identical, irrespective
of whether the two particles are emitted in the same string
or in two different ones. This second possibility can give
leading contributions in AB [15]. The studies of W+W−
events produced in e+e− collisions can provide some ex-
perimental information on the problem. BEC’s are con-
sistent with the picture where pions from the W system
are unaware of the pions produced by the others [16,17].
Also the drop of λ with multiplicity observed by UA1 is
consistent with our assumption.

Under these assumptions one finds that [18]

λ =
nS

nT
, (1.5)

where nS is a mean number of particle pairs produced
in a given rapidity and transverse momentum range in
the same string and nT is a mean total number of pairs
produced in the same kinematical range.

From (1.5) it is clear, that λ = 1 for a single string
and decreases with the increasing number of independent
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strings. Therefore λ, in a sense, measures the mean num-
ber of effective strings (sources) existing in a given colli-
sion [19–21].

It is important to realize that strings cannot be point-
like in the transverse space. Each string should have a
finite transverse dimension, determined by the color field
stretched between the color charges of the partons placed
at the extremes of the strings. As the energy and/or atomic
number of the projectile and target increase the number
and density of strings also increase, so that the strings
start to overlap in the transverse space. What really hap-
pens when strings overlap, that is, how they interact at
close distance, is a dynamical question. Two possible limit-
ing scenarios have been proposed on the subject. One may
assume that overlapping strings immediately fuse into a
new string with a higher color, like drops of liquid. This ev-
idently means an abrupt change of the color field geometry
as soon as the strings touch each other. In an alternative
smooth scenario one may think that the geometrical struc-
ture of the color field does not change: the strings preserve
their individual form in the transverse space and only the
color field becomes stronger in the cluster region. The dy-
namical properties of the strings are very different in these
two scenarios. In particular, in the first, “fusion” scenario
there is no phase transition as the string density grows
indefinitely. To the contrary, in the second scenario the
percolation phase transition occurs as the density grows
up to a certain critical one. We call this latter scenario
the “percolation” one. We have no theoretical preferences
for either of these scenarios and hope that the experimen-
dal evidence will give the possibility to choose between
them (or reject both). Unfortunately for global observ-
ables, such as multiplicities or transverse momentum dis-
tributions, most of the predictions are rather similar in
both models.

In this paper, we show how the existing and forth-
coming experimental data on the chaoticity parameter λ
can distinguish between these two possibilities. In particu-
lar, we show that in the percolation scenario the behavior
of λ with the energy and atomic number of the projec-
tile and target is in agreement with the general trend of
experimental data. Previously, similar research was done
pointing out that the general trend of the data could be
explained by a possible onset of collective phenomena [18].
These collective phenomena seem to reduce drastically the
effective number of strings. Here we go further, showing
that this collective behavior is very probably realized by
percolation of strings.

The plan of this paper is as follows. First the experi-
mental situation is summarized in Sect. 2. In the next two
sections we compute the chaoticity parameter in different
scenarios of string interaction. Finally our conclusions are
presented in Sect. 5.

2 Experimental data

The experimental data on λ have been obtained in very
different kinematical situations and also assuming differ-
ent extrapolations and corrections, which makes rather

difficult the comparison with theoretical models and even
the comparison among the different data.

Data with light projectiles like hadrons or oxygen [20,
22] show that λ decreases as the multiplicity or the atomic
number of the target increases. For instance, the values
of λ for O–C, O–Cu, O–Ag and O–Au [22] are 0.92 ±
0.1, 0.29 ± 0.03, 0.22 ± 0.03 and 0.160 ± 0.006, respec-
tively. These numbers correspond to a centrality, charac-
terized by the average number of the participants quoted
as equal to 19.2, 39.5, 47.2 and 52.9 respectively. The ra-
pidity range considered was −1 ≤ ylab ≤ 1. The same ex-
periment shows a somewhat weaker decrease for p, O and
S colliding with the Au target: λ= 0.45±0.08, 0.32±0.04
and 0.33 ± 0.04, respectively [23]. NA44 quoted a value
of 0.56 ± 0.02 for S–Pb central collisions (3% most cen-
tral collisions) and 0.59 ± 0.03 for Pb–Pb central colli-
sions (15% centrality) [24]. The range of pseudorapidity
is 1.8 < η < 3.3 and pT = 150MeV/c and 170MeV/c
respectively. In a different kinematics, 3.1 < y < 4.3, the
forward rapidity region, NA44 obtains λ = 0.46± 0.04 for
S–Pb [25].

As we see, the experimental situation on λ is not clear
but some trends can be distinguished. First, a decrease of
λ with the growth of multiplicity for a small number of
collisions is observed, as the data with p and O projectiles
show. As the number of collisions goes up, the behavior
of λ changes: it no longer decreases with the multiplicity
and even may increase, as the central Pb–Pb collisions
data show. Also the values of λ found at the edge of the
rapidity range are larger than the ones measured in the
central rapidity region. (Notice that the pion multiplicity
is larger in the central rapidity region.)

In the comparison of theory and experiment attention
has to be paid to the normalization of the correlation func-
tion. Instead of using the denominator in (1.1), that is,
the product of the single inclusive cross sections for each
particle, in the experimental data a background spectrum
B(pµ

1 , p
µ
2 ) is usually used to exclude all such effects as

production dynamics, experimental acceptances and bi-
ases, leaving only those induced by BEC. The most com-
mon prescription for B(pµ

1 , p
µ
2 ) is that of different-event

mixing. In this scheme, events combining individual pi-
ons taken from different events are used to calculate the
background spectrum. Details on that can be found in
[25,26]. Equation (1.5) has been obtained without taking
into account a possible enhancement due to Bose–Einstein
statistics in the single inclusive cross sections, which is es-
sentially equivalent to using the same normalization in
the experiments under the same kinematical conditions.
Therefore, to obtain the true correlation function and the
λ parameter the experimentalists have to correct the ob-
tained value. Following the NA44 collaboration one writes

λ = Kspc(p1, p1)(λuc + 1) − 1, (2.1)

where λuc and λ are the uncorrected and corrected chaotic-
ity parameters, respectively and Kspc(k, k) is a correction
to the normalization, that is, to the product of the single
inclusive cross sections. In our calculations we correct our
values using formula (2.1).
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Another point which should be mentioned is that λ de-
pends on the sum of the momenta of the particles (always
at p1 = p2). In the rest of the paper we do not take into
account this dependence, since we consider only low mo-
menta (p1 ≈ 0). The above mentioned experimental λ’s
also correspond to low momenta.

Finally, we consider only prompt particles. Particles
coming from long-lived resonances are produced coher-
ently so that some partial degree of coherence has to be
introduced into the decay of Lund strings [27]. This would
reduce the λ value. To take into account this effect a very
sophisticated Monte-Carlo code is needed. As we are in-
terested only in the general trend and not in the detailed
comparison, we neglect this effect.

3 String fusion

In the fusion of strings [28] or in the formation of color
ropes [29], strings fuse as soon as their transverse posi-
tions come within a certain interaction area: of the order of
the string transverse dimension πr2. The fusion of strings
may take place only when their rapidity intervals overlap.
The emerging string has the energy-momentum equal to
the sum of the energy-momenta of the original strings and
the same transverse size πr2. Its color properties are de-
termined from the standard SU(3) color composition law.

Using the analytical version of the string fusion model
[30,31], the probability of obtaining νn clusters formed
from n original strings is

P (νn) =
cpN−M∏

n=1(νn!(n!)νn)

M−1∏
k=1

(1 − kp), (3.1)

where c is a normalization constant, p the fusion probabil-
ity, N the total number of strings and M the total number
of clusters

p = r2/R2, M =
∑

n

νn, N =
∑

n

nνn (3.2)

(πR2 is the total interaction area). The mean value of the
number of clusters with n fused strings is

〈νn〉 = Cn
Np

n−1(1 − p)N−n, (3.3)

and therefore

〈M〉 =
1
p

(
1 − (1 − p)N

)
. (3.4)

In the “thermodynamical limit” p → 0, N → ∞, the rel-
evant parameter is the string density η = Np = Nr2/R2.
In this limit the ratio

〈M〉
N

=
1
η
(1 − e−η) = F 2(η) (3.5)

depends only on η.
The multiplicity µn of a cluster of n strings is propor-

tional to the color charge at its ends [28,29]. Since the

color charge of the cluster is a vectorial sum of the color
charges of fusing strings, we find

〈Q2
n〉 = n〈Q2

1〉, (3.6)

where Q1 is the color charge of the single string and we
have used the fact that the average of the product of color
charges of different strings is zero.

From this we conclude

µn =
√
nµ1. (3.7)

Turning to (1.5) and using the results of [31] we find
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It follows that
λ =

1
NF (η)2

. (3.10)

For low η, λ falls with N as expected because this case
corresponds to independent strings. At large η, λ results
independent of N . In this limit λ = r2/R2. The experi-
mental data agree qualitatively with such a behavior but
already at η slightly above one (Pb–Pb central collisions
at SPS energies) λ begins to grow. In addition to this, for
Pb–Pb, the values of λ are not so small as r2/R2. So we
conclude that the fusion scenario seems to contradict the
experimental data.

4 Percolation of strings

As mentioned, in the case of string fusion there is no phase
transition so far as the formed clusters have the same size
as the original strings [31]. In an alternative scenario the
area of a cluster is formed by the geometrical sum of over-
lapping strings areas. In this case the percolation phase
transition takes place when η reaches a critical value, ηc

[32]. It corresponds to the appearance of at least one path
formed by overlapping strings which passes through the
whole transverse area of the interaction. The value of ηc

lies in the interval 1.17–1.5, depending on the profile func-
tions used for the colliding nuclei [33].

In the percolation scenario the dynamics of string in-
teraction may in principle be of different forms. We are
going to considerer three cases:

(a) The color field is summed only in the overlapping re-
gion of the original strings [34]. In the rest of the area
the field does not change. As a result, the cluster be-
haves in general as several independent sources, their
number depending on the way of overlapping.

(b) The resulting color field is spread homogeneously all
over the cluster area. Then each cluster can be con-
sidered as a single source of incoherent (chaotic) pro-
duction of particles.
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(c) An intermediate situation between the cases (a) and
(b). Each cluster is considered as a single source like in
(b) and also the color is assumed homogeneous all over
the cluster but this color is given by a vectorial sum
of the original strings times a factor which takes into
account the ratio between the area of the cluster and
the area of the original strings. In this way the abrupt
change of the field strength is avoided which occurs in
case (b) when strings overlap in a small area. In case
(c) the number of particles produced by clusters of the
same number of strings but overlapping differently is
different.

Let us start with the case (a). Denote by ni the num-
bers of regions where i strings overlap and by Sij the area
of the jth such region. Then Si =

∑ni

j=1 Sij is the total
area where i strings overlap.

The color of the jth region where i strings overlap
is i1/2SijQ1/S1 and the multiplicity of the particles pro-
duced in this region will be i1/2Sijµ1/S1. Therefore

nS =
1
2
µ2

1

〈
N∑

i=1

ni∑
j=1

iS2
ij/S

2
1

〉
, (4.1)
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1
2
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1
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N∑
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√
iSi/S1

)2〉
. (4.2)

Using the results of [34], we obtain in the thermody-
namical limit

λ =
I

NG(η)2
, (4.3)

where [34]

I =
∫ 2

0
dRR

2
π
(α− sinα)e−2η[1−(1/π)(α−sin α)], (4.4)

G(η) =
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√
n
ηn
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√
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η
= F (η) (4.5)

and α = 2arccos(R/2).
Since the multiplicity is

µ = Nµ1F (η), (4.6)

the quantity
λµ

µ1
=

I

F (η)
(4.7)

depends only on η.
For small η, λ ∼ I/N and falls with N as in the string

fusion scenario. However for large η, λ → 0 in clear dis-
agreement with the trend of the experimental data.

Now we pass to the case (b), where every cluster of
overlapping strings acts like a chaotic source. If the cluster
has i strings its color is Qi = i1/2Q1 and therefore the
multiplicity from this cluster is

µi =
√
iµ1. (4.8)
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Fig. 1. Dependence of λ on η for percolating strings in case
(b) of the text according to formula (4.11)

The number of pairs of identical particles produced by the
cluster is

nS =
1
2
µ2

1

〈
N∑

n=1

νnn

〉
, (4.9)

and the total number of pair of identical particles pro-
duced is

nT =
1
2
µ2

1

〈(
N∑

n=1

νn

√
n

)2〉
. (4.10)

So we find

λ =
N〈(∑N

n=1 νn
√
n
)2
〉 (4.11)

To compute (4.11) a Monte-Carlo simulation was done,
generating N circles of radius r inside a circle of radius
R. Varying N with r and R and fixed, we obtained the
dependence of λ on η which is shown in Fig. 1. The error
bars at each η correspond to statistical errors of our sim-
ulation. They are larger at higher η because we generated
less events.

The obtained results are in agreement with the general
trend of the experimental data. For η > 0.4 the peculiar
dependence of λ on the string density that we found is
very similar to the dependence of the fractional average
cluster size [35]. Also, the derivative of the string density
is maximal at the critical point.

More realistic calculations, taking into account the
energy-momentum of the strings and of the clusters, were
done by a Monte-Carlo simulation with the following in-
gredients:

(1) We generated configurations of strings in the trans-
verse space for different nucleus–nucleus collisions.
The wave functions of the nuclei and the distribution
of the partons in the nucleon were taken standard [28].
Each string had its energy-momentum specified by the
energy-momentum of the partons at the ends, given
by the corresponding structure functions. Up to this
point we followed the code described in [28].
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Fig. 2. Dependence of λ on η for different nucleus–nucleus
collisions with percolating strings in case (b) of the text tak-
ing into account the energy-momentum of the strings. Each
point represents a specific type of nucleus–nucleus collisions
explained in the text. Correlations are calculated between
identical pions for y1cm = y2cm = 0.5 and mT1 = mT2 =
0.35GeV/c2

(2) We identified clusters from the known transverse posi-
tions of the strings. Each cluster was given an energy-
momentum equal to the sum of the energy-momenta
of the strings which form it. Its color was taken as
n1/2 if it is formed of n strings.

(3) A cluster of n strings of energy Ej was assumed to
produce a number of particles

µn =
√
nµ1(E), (4.12)

where E =
∑n

j=1Ej and µ1(E) is the multiplicity of a
single string depending on the energy, which is known
[28].

In this way, we calculated the ratio nS/nT to obtain
the curve presented in Fig. 2, where the points are the re-
sults, from left to right, for C–C minimum bias collisions
at SPS energies (non-filled triangles), S–S minimum bias
collisions at SPS, RHIC (s1/2 = 200GeV A) and LHC
(s1/2 = 5500GeV A) energies respectively (filled boxes),
O–O central collisions at SPS, RHIC and LHC energies
respectively (non-filled boxes), S–S central collisions at
SPS, RHIC and LHC energies respectively (filled trian-
gles), Ag–Ag central collisions at SPS, RHIC and LHC
energies respectively (stars) and Pb–Pb central collisions
at SPS, RHIC and LHC energies respectively (diamonds).

Each point was obtained by the simulation of events
which produce particles in the central rapidity region com-
ing from the fragmentation of clusters formed from a num-
ber N original strings, which was determined by the type
of collision. As this type also determines the total trans-
verse area of the interaction, the corresponding value of
η was also fixed. The vertical error bars correspond to
the statistics of the simulation, and the horizontal bars
correspond to the uncertainties in N for a given type of
collisions.

We observe that the results do not depend only on η
but also on A, so that the η scaling is broken. For high η

Fig. 3. Two clusters formed from three strings with very little
and very large overlapping

0 1 2 3 4
Η

0.3

0.4

0.5

0.6

0.7

0.8

Λ

Fig. 4. Dependence of λ on η for percolating strings in case (c)
of the text taking into account the energy-momentum of the
strings. The points correspond to the same type of collisions
as in Fig. 2

the values of λ are lower than the ones corresponding to
Fig. 1. In any case, the results reproduce rather well the
general trend of the experimental data.

Finally we discuss case (c). In Fig. 3 we show two dif-
ferent clusters of three strings. In the previous case, the
color extended all over the whole area is the same for both
clusters, equal to 31/2Q1. This looks unphysical and the
effect of the different total areas should be taken into ac-
count. For this reason we assign color (3A3/A1)1/2Q1 to
the cluster, where A3 is the area of the cluster and A1 is
the area of a single string. Then if the three strings are just
touching each other the assigned color is (3·3)1/2Q1 = 3Q1
and there is no color suppression, so that the cluster gives
the same multiplicity as three independent strings. In the
other extreme case, when the three strings are fully over-
lapping, the color is (3 · 1)1/2Q1, and we find a maximal
color suppression, as in cases (a) and (b) discussed before.
So in case (c) the color varies continuously as strings over-
lap. In general the multiplicity of a cluster of n strings is
now given by

µn =
√
n
An

A1
µ1(E). (4.13)

To calculate the chaoticity parameter we proceeded as
in case (b) but changing formula (4.12) to (4.13). The re-
sults are plotted in Fig. 4 for the same collisions as in (b).
The error bars correspond to the statistics of the simula-
tion. It is seen that the η scaling is essentially recovered.
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Also at high η, λ reaches higher values than in the previous
case.

5 Conclusions

The systematic determination of the chaoticity parame-
ter can provide valuable information on the possibility of
collective phenomena in nucleus–nucleus collisions. In this
paper we studied different scenarios of the interaction be-
tween color strings, comparing their predictions for the
chaoticity parameter with the experimental data. The no-
interaction (independent strings) scenario and string fu-
sion scenario with the fused string having the same trans-
verse area as its parents seem to be excluded by the data.
In the percolation scenario different dynamical possibili-
ties were studied with a different distribution of the color
field inside the cluster. We find that the cases where each
cluster acts like a single chaotic source are in agreement
with the experimental data. Case (c) of the percolation,
when the multiplicity suppression is controlled by the area
of the cluster, looks especially attractive. In this case for
η > 0.5 the shape of the chaoticity parameter as a function
of η is very similar to the dependence of the fractional av-
erage cluster size, and at the critical point, η = ηc, dλ/dη
has a maximum.

A systematical experimental study of this possibility in
the SPS, RHIC and LHC forthcoming experiments would
be welcome.
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